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A plane problem on a shear crack propagating in an unbounded medium was investigated in [1]. The 
movement of the surface of a half-space when a shear crack propagates at an angle to the surface was studied 
in [2]. Eexpressions for the accelerations and displacements of points on the free surface of a half-space were 
obtained for straight waves generated by the crack. 

In this article, we consider dynamic phenomena in a half-space composed of two parts, rigid and elastic. 
Initially, adhesion between them is complete. A half-plane which is inclined at an arbitrary angle a to the free 
surface of the compound half-space is the interface. Movement of the half-space's surface is determined by an 
internal dynamic source, namely, a shear rupture which appears and is then located in the plane interface. 

Such an idealization allows us to describe the processes connected with destruction of the layers falling 
down steeply, which takes place under a large difference in the rigidity characteristics of the materials in 
contact. The aim of this article is to evaluate the overloads on the surface of the half-space caused by waves 
falling down from the dynamic shear rupture. 

We choose a point of the interface at a depth h as the origin of the Cartesian coordinates. The axes 
are oriented as shown in Fig. 1. Assume the z-axis to lie in the interface and to be parallel to the half-space's 
surface. Suppose that there is no deformation along the z-axis, so that the desired solution is a function of x, 
y, and t, i.e., a plane deformation is investigated. In the elastic part of the half-space, an initial static stress 
state is given, taking into account both the weight of the material and probable additional compression at 
infinity. The displacements in the contact plane are zero. 

Let a rigid contact be broken at the moment t = 0 on the line x = 0, y = 0 ( -~x~ < z < c~) and shear 
stresses be large enough for a rupture to appear along the boundary. If X, Y are the Cartesian coordinates 
connected with the interface (see Fig. 1), then the current position of a defect is specified by the inequalities 
- v l t  < X < v2t, Y = 0 ( - c ~  < z < c~). The constants Vl and v2 are the subsonic velocities of the edges 
of the rupture. Denote the known initial state in the X, Y-axes as 

=  o(X,Y) < o ,  = > o .  (1) 

It is assumed that a dynamic stress relief proportional to the normal stress takes place on the shear 
rupture with closed faces (the lower is fixed, and the upper slides over it): 

axr( t ,X,O)  = -kayr ( t ,X ,O)  (k = const, k > 0), 

where ~i/( t ,X,0) are the stresses on the shift. The stress field aij(t ,X, Y) changed by the shift can be 
represented as the sum of the initial static (1) and the dynamic stress pij(t, X, Y): 

ai j  = a~ + Pij �9 

Mining Institute, Russian Academy of Sciences, Novosibirsk 630091. Translated from Prikladnaya 
Mekhanika i Tekhnicheskaya Fizika, Vol. 36, No. 4, pp. 155-162, July-August,1995. Original article submitted 
July 27, 1994. 
614 0021-8944/95/3604-0614 $12.50 (~ 1996 Plenum Publishing Corporation 



..... %x Y[ ~-h 

Fig. 1 

The following conditions should be met for the desired dynamic state on the rupture and on the contact 
boundary with t < h/(vl sin a) until the edge of the rupture reaches the half-space's surface: 

pxy(t ,x ,o)  = - T 0 ( x , 0 )  - k ~ 0 ( x , 0 )  - kpry(t ,x,o) ( -v l t  < x < v2t), 
(2) 

U(t,X,O)=O (X<-vl t ,  X>v2t), V(t,X,O)=O (-h I s i n o ~ < X < o o ) .  

Here U and V are components of the displacement vector. 
Note that under the conditions of a dry friction on the rupture two unknown stresses are not given 

in an explicit form but are only related to each other. If k = 0, conditions (2) describe the shear rupture 
without friction on the surface. In this case the shear stress totally dropped is equal to - r0 .  Thus, conditions 
(2) determine the source of disturbances implicitly. The source will be known and can be prescribed by the 
displacements if we find the shift U(t, X, 0) on the shear rupture. 

There is no load on the surface y = h, so the stresses in the x, y-axes are zero on it: 

~ . ( t ,  x, h) = ~ ( t ,  x, h) = o. (3) 

The boundary value problem (2), (3) is completed with zero initial conditions. The displacements are 
measured from those achieved in the equilibrium state, which has no effect on the boundary conditions (2). 

We consider the boundary-value problem (2) for the moments of time until the compressional wave 
radiated by a defect and reflected from the half-space's surface reaches the shear rupture surface. We can 
find the source of the disturbances, the shift under the shear rupture, in this time interval, if we solve the 
problem of a dynamic shear rupture propagating along the boundary of contact between the elastic and rigid 
half-space, i.e., without considering the interaction of waves reflected from the surface of the elastic half-space 
and the defect. For the later moments of time, neglect of such waves in (2) is partly justified if the distance 
from the shear rupture to the surface is great, and therefore the influence of back waves on the defect and all 
the more on the movement of the half-space's surface under the subsequent reflections is insignificant due to 
the decrease in the amplitude of the wave as it travels. 

On using the integral Laplace transform L over time and the Fourier transform F over the X- 
coordinate (s and q are the parameters of the transforms), we obtain the relation between the transforms of 
the displacements and the components of the vector of stresses on the boundary [3]: 

].IuLF(8, q, 0) = Sllp~F(s,  q, 0) + S12/~F(s, q, 0), 

pvLF(s, q, O) LF = - & 2 p x y ( S ,  q, o) + S22~,F (~, q, 0), (4) 
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S l l  = a~s2n2  $22 = a~s2nl S12 = iq(n~+q2--2nln2) 
R ' R ' R ' 

R = ( n  2 + q 2 ) 2 - 4 q 2 n l n 2 ,  ni=~/q2+a2s 2 ( i = 1 , 2 ) .  

Here # is the shear modulus, al and a2 are the reciprocals of the velocities of the compressional and shear 
wave in the deformable part of the half-space. 

We search for shear stresses as the sum 

pxy(t, X, Y) = -kpyv(t ,  X, Y) + f(t, X, Y) .  (5) 

With such a choice of pxY, the boundary value of a new function f on the shear rupture is determined, 
and, as follows from (2), it has the form (in what follows, we omit the third argument of the functions at the 
boundary points) 

f(t ,  X) = --To(X) -- k(7o(X) ( -v l t  < X < v2t). (6) 

After substitution of (5) and with regard for the condition V = 0 which is met over the contact 
boundary of the half-space, relationships (4) transform into the following: 

#sULF(s, q) = ~ W LF(s' q)' (7) 

W (  s = iq(q2Dnln2)-- , D =  ikq(n 2 + q2 - 2nln2) "Jr als2nl . 

Only one boundary condition V = 0 is as yet satisfied in expressions (7) on the contact boundary. 
The conditions on the extension of the shear rupture for the displacement U and on the shear rupture for the 
function f should be taken into account in the first expression from (7) which connects the transforms of the 
functions mentioned, and thus we have the equation for finding the functions U and F.  

In the time interval considered there will be no typical units of length and time in the problem if the 
vector of stresses of the initial static state is approximated by the sums 

N N 
ao( X) ~, o ,, o ,, o c o n s t )  = a n X ,  r0(X) = Y] rnX (a0 = const, r,~ = (8) 

n----0 n = 0  

in the contact line. 
Suppose that this approximation takes place and the coefficients a ~ and r ~ are known. Then a solution 

of the dynamic problem for the contact line can be represented as the sum of the solutions to self-similar 
problems 

N N N 
py~= ~ ' ~ p , , y ~ ( X / t ) t " ,  p ~ =  ~ p , , ~ y ( X / t ) t " ,  f =  ~ ' ~ f ~ ( X / t ) t " ,  

n = 0  n = 0  n = 0  

whose homogeneity degree n is related to the number of the corresponding boundary value from (8), since, 
for example, 

0 tn. frO(X) = Z (rn 
n.~O 

Thus, for every n the solution is reduced to the solution of (7) with conditions derived from (2), (8) 
(from here on the subscript n of functions is omitted for brevity): 

f ( t , X ) = - ( r ~ 1 7 6  " ( - v # < X < v 2 t ) ,  U ( t , X ) = 0  ( X < - v l t ,  X > v 2 t ) .  (9) 
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The dependence of f on t, X is as follows: f ( t ,  X )  = t n Q(X/ t ) .  
We search for the solution of self-similar problems (7), (9) as in [3, 41 . The Laplace and Fourier transform 

of functions of the form t ~ Q(X / t )  is a homogeneous function of the parameters of the transforms 

fLF = s -n-2Oo(s / iq)  " 

To invert homogeneous transforms we use the formula (see [3, 5]) 

t 

f ( t , X )  = f + ( t , X ) -  f _ ( t , X ) ,  f ( t , z ) =  1 / 2rizn!  --(t - r ) "Qo(z / r )  dr (z = X + i~). (10) 
0 

Here the piecewise analytic function f ( t ,  z) is an analytic representation of the function f ( t ,  X )  [6], and the 
subscripts 4- denote the limiting values of this function as z ~ X 5= i0. As follows from (10), the jump in 
these values is equal to f ( t ,  X) .  

After the inversion of (7) by formula (10), we obtain an equation for the analytic representations of 
the functions U and f :  

z I ~ t ~ r  1 + nln2 #u(n+2)(t,z) 
-[ W~z/t)J n+l) t t ' z )  ' W ( z t t )  = k [2 + 2nln2 - (azz/ t)  2] - (a2z/t)2nl ' (11) 

ni = ~/(aiz/t) 2 - 1 ,  ni > O ( X / t  >a~ -1, ~ = 0 ,  i = 1 , 2 )  

(the superscripts in parentheses denote the order of a partial derivative with respect to time). Single-valued 
branches of the radicals ni on the plane z / t  are marked with cuts (-a~ -1, a~ -1) along the real axis, and in this 
case the values of radicals on the real axis are determined as 

/ sgn (X) ~/(aiX/t)  2 - 1 (IX/t l  > <1, = o), 
rgi 

+i ~/1 - ( a i S / t )  2 (IX/tl < a? a, ~ = +0). 

The solution of Eq. (7) with respect to the transforms is reduced to the solution of Eq. (11) with 
respect to two piecewise-analytic functions, and the jumps in their t ime derivatives are determined from (9): 

U (n+2) = D (n+2) - 0 (n+2) = 0 (X < - v l t ,  X > v2t), 
(12) 

f ( n + l )  = ] ( : + 1 )  - -  ] ( 2 + 1 )  = 0 (--Vl t  < X < v2t ) .  

The solution of Eq. (11) with conditions (12) is found with the help of the auxiliary function 

= - - arctan ~o(r/) dr/ , 
71" 

--,o 1 

4,2J1 - o ,2 

~o(.) = k [2 _ 241  _ a 2 r / 2 \ / 1 _ a 2 ~ 2 _ 1 2 , 2 ] ,  (13) 

which is constructed so that  the jump in the function 

can be found at each point of the real axis [7]. 
As follows from (9), the jump in 12 is zero throughout the axis, except for the points of change of the 

boundary conditions, and hence the function has the form ([3]) 

1 " [ + t_ jB i  ] 
12(t,z) 

~ i  j--O (z + vlt)J+l (z -- v2t)J+l J' 
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i.e., the jump in fl is a function located at the points X = v2t and X = - V l t .  
Taking into account (13), we obtain a solution to functional equation (11): 

,O("+2)(t, z) = ~ n(t, z) 
t ~,(z / t ) '  

a ( t , z )  
} ("+')( t , z )  = w(z l t )W(z l t )"  

The constants A i and Bj are found from the boundary condition (9) with respect to f .  Integrating j? 
over time we have 

-X/vl 
1 /  (..~) d'r 

f(t, X) = To H(vlt + X) + ~.. (t - r)n~1 --r (-v , t  < X < 0), 
0 

X/v2[__ ( X )  dr (14) 1 
. (t -~)"~2 (o < x < v~t), f(t, X) = To H(v2t - X) + ~ 
0 

To = _(~o + k~o)x . ,  

where H( . . . )  are the Heaviside functions; (Ih and r are the jumps in the function ~(z/t) = 
tfl(t, z)/[w(z/t)W(z/t)] on the intervals (-vlt  < X < 0) and (0 < X < v2t). 

It is evident that to satisfy the boundary condition (9) in relation to f it is necessary to set the integrals 
in (14) equal to zero, and after a change of the integration variable they take the form 

1/Vl 

0 

I /v2  

0 

(m -- 0 , 1 , . . .  , n ) .  

We can find all the constants A i and B i from these equalities. 
For simplicity we restrict ourselves only to the first terms of the stress expansion, i.e., from here on 

assume that n = 0. The constants A and B were calculated in [7] for this case: 

. )  
['~(t'Z)=2"~i Z"[-Vl t'+" Z--v2t ' A v 2 - B v l = O ,  A + B = r ( r o + k a o ) / J ,  

oo 
J = Re / d~ v2 - vl 

o (Vl + 7  + i~)(v2 - 7 -  i~)w(7  + i ~ ) W ( 7  + i~ ) '  7 = 2 

Thus, we have found the source of the disturbances. On solving the problem on the half-space Y > 0 under 
the conditions 

v ( t , x , o )  = t, ,o(X/t),  v ( t ,  Y,O) = o, 

given on the surface Y = 0, we determine the displacements in the waves propagating toward the boundary 
y = h. To perform this we should find the LF-transform of the function U on the boundary. Note that when 
n = 0, the function U is a homogeneous function of degree - 3  

U~,V = s -3Vo(s / iq ) ,  

and on the other hand, as follows from (10), it has the corresponding analytic representation 

0(t,z)= 1 / -2,~---7 (t - ~) u o ( d , - )  ~-, 
0 

rCz/T ~'o 
Uo(z/v) = (1 + Vlr/Z)(1 - v2r/z)w(z/r)' C = Alrg+ B = +#jko'o 
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By comparing the expressions obtained, we get 

Uo(sfq) = 7riC s/q 
(1 + iv iq/s)(1 - iv2q/s) w(s/ iq)"  

Then we easily obtain the transforms of the displacements in a wave propagating through the half-space 
Y > O :  

Uo(s/iq) (q2e_nt Y _ nln2e_n2y) ' s3uLF(s' q' Y)  = q2 __ nln2 

iqn lUo(s / iq )  (e_nl Y - -  e_n2y) ' 
savLF(s'  q' Y) = q2 _ _  1 . t 1 7 ~ , 2  (15) 

ni = ~/a 2s 2 + q2. 

It remains to take into account the interaction of the resultant waves with the boundary y = h. For 
this we solve the problem of reflection of waves from the free boundary of the half-space. To do this we need, 
first, to change from the X, Y coordinate system to the x, y system, then to recount displacements (15) by 
the formula u + iv = (U + iV)e i~ and to perform the Fourier transform ~" over x (transform parameter p), 
relating it to the Fourier transform F over X in expressions (15), as in [2]. After this recalculation, on satisfying 
conditions (3), we have the L$'-transforms of the displacements in a wave, taking into account the reflection 
of a compressional and a shear wave from the boundary. On the boundary y = h, the transforms of the 
displacements have the form 

S3ULY(S, p, h) = 4 ipm2Fl(p/s)e  -mxh + 2 (a2s 2 + 2p2)F2(p/s)e -m2h, 

s3vLY(s, q, h) = 2 (a~s 2 + 2 p2)F1 (p/s)e -rnl h __ 4 ip?-t21F2(p/s)e -m2h, 

Fl(p/s)  = a~s4ql (psin o~ + irnl cos c~) 
[nl(ql)n2(ql) -- q~]R Uo(s/iql) , 

ia~slnl(qz)(p sin ~ + ira2 cos c~) 
F2(p/s) = [nl(q2)n2(q2) - q~lR Uo(s/iq2) , 

R = (m 2 + p2)2 _ 4p2rnlm2, mj  = k/a~s2 + p2, nj(ql) = ~/a2s 2 + q~, iql = pcosc~ - i m l s i n c t .  

We invert these transforms which have homogeneous function-factors of the exponents with the help 
of analytic representations [3, 5]. After that,  the vertical component of the acceleration on the surface results 
from the formulas 

0 ~  t - 0~2  t - 

m j ( 6 )  = + 

Here ~j are the roots of the equation h ~  + ~2 _ iz~ = t (z = x + i0): 

h { + : > + 
~i = h2+x--------~+ h2+x--------- 7 i s g a ( x ) r  2, t 2 < a ~ ( h 2 + x 2 ) .  
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The signs of the real and imaginary part of each calculated complex radical satisfy the inequalities 

Re mj(~i)/> 0, xImmj(~ i )  < O. 

Figures 2-4 present the calculations that were carried out for k = 0. The depth h at which the shear 
starts and the velocity of the shear wave a21 were considered the units of measurement. 

Figure 2 shows the dependence of C on v2 with a2vl = O, 0.25, 0.5, 0.75, 0.9 (curves 1-5). Figures 3 
and 4 present the horizontal/i and vertical ~ components of the acceleration of a particle on the half-space's 
surface at the point with coordinates (10, 1) ~vhen a = 0 (curve 1 is for Vl = 0.25 and v2 = 0, curve 2 is for 
vl = 0, v2 = 0.25) and when a = -~r/6 (curve 3 is for vl = 0.25, v2 = 0, curve 4 is for vl = 0, v2 = 0.25). 
The point tn corresponds to the moment when the Rayleigh wave arrives at the point of observation from the 
epicenter. Note that the direction of breakage can change the acceleration amplitudes by 1.5 to 2 times in the 
front of the Rayleigh wave. 
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